Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Sci Pollut Res Int ; 29(29): 43516-43531, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1782918

RESUMEN

The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.


Asunto(s)
COVID-19 , Selenio , Dieta , Humanos , Micronutrientes , Vitaminas/farmacología
2.
Sci Afr ; : e01084, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1586561

RESUMEN

Severe SARS-CoV-2 infection causes systemic inflammation, cytokine storm and hypercytokinemia due to activation the release of pro-inflammatory cytokines that have been associated with case-fatality rate. The immune overreaction and cytokine storm in the infection caused by SARS-CoV-2 may be linked to NLRP3 inflammasome activation which has supreme importance in human innate immune response mainly against viral infections. In SARS-CoV-2 infection, NLRP3 inflammasome activation results in the stimulation and synthesis of natural killer cells (NKs), NFκB, and interferon gamma (INF-γ), while inhibiting IL-33 expression. Various efforts have identified selective inhibitors of NLRP3 inflammasome. To achieve this, studies are exploring the screening of natural compounds and/or repurposing of clinical drugs to identify potential NLRP3 inhibitors. NLRP3 inflammasome inhibitors are expected to suppress exaggerated immune reaction and cytokine storm induced-organ damage in SARS-CoV-2 infection. Therefore, NLRP3 inflammasome inhibitors could mitigate the immune-overreaction and hypercytokinemia in Covid-19 infection.

3.
ASN Neuro ; 13: 17590914211057635, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1511685

RESUMEN

Among the plethora of debilitating neurological disorders of COVID-19 syndrome in survivors, the scope of SARS-CoV-2-induced dysautonomia (DNS) is yet to be understood, though the implications are enormous. Herein, we present an inclusive mini-review of SARS-CoV-2-induced DNS and its associated complications. Although, the direct link between Covid-19 and DSN is still speculative, the hypothetical links are thought to be either a direct neuronal injury of the autonomic pathway or a para/post-infectious immune-induced mechanism. SARS-CoV-2 infection-induced stress may activate the sympathetic nervous system (SNS) leading to neuro-hormonal stimulation and activation of pro-inflammatory cytokines with further development of sympathetic storm. Sympathetic over-activation in Covid-19 is correlated with increase in capillary pulmonary leakage, alveolar damage, and development of acute respiratory distress syndrome. Furthermore, SARS-CoV-2 can spread through pulmonary mechanoreceptors and chemoreceptors to medullary respiratory center in a retrograde manner resulting in sudden respiratory failure. Taken together, DSN in Covid-19 is developed due to sympathetic storm and inhibition of Parasympathetic nervous system-mediated anti-inflammatory effect with development of cytokine storm. Therefore, sympathetic and cytokine storms together with activation of Renin-Angiotensin-System are the chief final pathway involved in the development of DSN in Covid-19.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/efectos adversos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , COVID-19/mortalidad , Sistema Renina-Angiotensina/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Síndrome de Liberación de Citoquinas , Femenino , Francia , Humanos , Masculino , Persona de Mediana Edad , Puntaje de Propensión , Estudios Prospectivos
4.
Biomed Pharmacother ; 143: 112193, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1427620

RESUMEN

In Covid-19, systemic disturbances may progress due to development of cytokine storm and dysregulation of and plasma osmolarility due to high release of pro-inflammatory cytokines and neuro-hormonal disorders. Arginine vasopressin (AVP) which is involve in the regulation of body osmotic system, body water content, blood pressure and plasma volume, that are highly disturbed in Covid-19 and linked with poor clinical outcomes. Therefore, this present study aimed to find the potential association between AVP serum level and inflammatory disorders in Covid-19. It has been observed by different recent studies that physiological response due to fever, pain, hypovolemia, dehydration, and psychological stress is characterized by activation release of AVP to counter-balance high blood viscosity in Covid-19 patients. In addition, activated immune cells mainly T and B lymphocytes and released pro-inflammatory cytokines stimulate discharge of stored AVP from immune cells, which in a vicious cycle trigger release of pro-inflammatory cytokines. Vasopressin receptor antagonists have antiviral and anti-inflammatory effects that may inhibit AVP-induced hyponatremia and release of pro-inflammatory cytokines in Covid-19. In conclusion, release of AVP from hypothalamus is augmented in Covid-19 due to stress, high pro-inflammatory cytokines, high circulating AngII and inhibition of GABAergic neurons. In turn, high AVP level leads to induction of hyponatremia, inflammatory disorders, and development of complications in Covid-19 by activation of NF-κB and NLRP3 inflammasome with release of pro-inflammatory cytokines. Therefore, AVP antagonists might be novel potential therapeutic modality in treating Covid-19 through mitigation of AVP-mediated inflammatory disorders and hyponatremia.


Asunto(s)
Arginina Vasopresina , Tratamiento Farmacológico de COVID-19 , COVID-19 , Arginina Vasopresina/antagonistas & inhibidores , Arginina Vasopresina/metabolismo , COVID-19/inmunología , COVID-19/metabolismo , Descubrimiento de Drogas , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , SARS-CoV-2 , Desequilibrio Hidroelectrolítico/tratamiento farmacológico
5.
Naunyn Schmiedebergs Arch Pharmacol ; 394(10): 2013-2021, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1391844

RESUMEN

Coronavirus disease 2019 (Covid-19) is a novel worldwide pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During Covid-19 pandemic, socioeconomic deprivation, social isolation, and reduced physical activities may induce heart failure (HF), destabilization, and cause more complications. HF appears as a potential hazard due to SARS-CoV-2 infection, chiefly in elderly patients with underlying comorbidities. In reality, the expression of cardiac ACE2 is implicated as a target point for SARS-CoV-2-induced acute cardiac injury. In SARS-CoV-2 infection, like other febrile illnesses, high blood viscosity, exaggerated pro-inflammatory response, multisystem inflammatory syndrome, and endothelial dysfunction-induced coagulation disorders may increase risk of HF development. Hypoxic respiratory failure, as in pulmonary edema, severe acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) may affect heart hemodynamic stability due to the development of pulmonary hypertension. Indeed, Covid-19-induced HF could be through the development of cytokine storm, characterized by high proliferation pro-inflammatory cytokines. In cytokine storm-mediated cardiac dysfunction, there is a positive correlation between levels of pro-inflammatory cytokine and myocarditis-induced acute cardiac injury biomarkers. Therefore, Covid-19-induced HF is more complex and related from a molecular background in releasing pro-inflammatory cytokines to the neuro-metabolic derangements that together affect cardiomyocyte functions and development of HF. Anti-heart failure medications, mainly digoxin and carvedilol, have potent anti-SARS-CoV-2 and anti-inflammatory properties that may mitigate Covid-19 severity and development of HF. In conclusion, SARS-CoV-2 infection may lead to the development of HF due to direct acute cardiac injury or through the development of cytokine storms, which depress cardiomyocyte function and cardiac contractility. Anti-heart failure drugs, mainly digoxin and carvedilol, may attenuate severity of HF by reducing the infectivity of SARS-CoV-2 and prevent the development of cytokine storms in severely affected Covid-19 patients.


Asunto(s)
COVID-19/complicaciones , Insuficiencia Cardíaca/etiología , SARS-CoV-2 , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Antiarrítmicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Cardiotónicos/uso terapéutico , Carvedilol/uso terapéutico , Síndrome de Liberación de Citoquinas/prevención & control , Digoxina/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Tratamiento Farmacológico de COVID-19
6.
Life (Basel) ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1325726

RESUMEN

Novel therapies for the treatment of COVID-19 are continuing to emerge as the SARS-Cov-2 pandemic progresses. PCR remains the standard benchmark for initial diagnosis of COVID-19 infection, while advances in immunological profiling are guiding clinical treatment. The SARS-Cov-2 virus has undergone multiple mutations since its emergence in 2019, resulting in changes in virulence that have impacted on disease severity globally. The emergence of more virulent variants of SARS-Cov-2 remains challenging for effective disease control during this pandemic. Major variants identified to date include B.1.1.7, B.1.351; P.1; B.1.617.2; B.1.427; P.2; P.3; B.1.525; and C.37. Globally, large unvaccinated populations increase the risk of more and more variants arising. With successive waves of COVID-19 emerging, strategies that mitigate against community transmission need to be implemented, including increased vaccination coverage. For treatment, convalescent plasma therapy, successfully deployed during recent Ebola outbreaks and for H1N1 influenza, can increase survival rates and improve host responses to viral challenge. Convalescent plasma is rich with cytokines (IL-1ß, IL-2, IL-6, IL-17, and IL-8), CCL2, and TNFα, neutralizing antibodies, and clotting factors essential for the management of SARS-CoV-2 infection. Clinical trials can inform and guide treatment policy, leading to mainstream adoption of convalescent therapy. This review examines the limited number of clinical trials published, to date that have deployed this therapy and explores clinical trials in progress for the treatment of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA